www.satm-tech.com

### Switching Method for Multiservice Network

### Vladimir V. Kharitonov

MS, CCNA State University of Telecommunications, SATM Group

### What Is To Be Discussed Presentation contains:

- Modern telecommunication networks
  - PSTN, Mobile, Data communications. Internet,
  - Network technologies convergence
- The idea of next generation multiservice network
  - The requirements of different kinds of traffic
  - IP and ATM as NGN technologies
- Overview of existing switching methods
  - PS, CS and Hybrid Switching
- General Approach to Switching
  - Data block
  - Multiplexing Interval
- Introducing "Block Switching" Method
- Summary

# Network Convergence

One global network for everything



## **Traffic Parameters and Requirements**

Different types of traffic produce different demands to network



- Data transmission rate
  - Peak rate
  - Average rate
  - The burst coefficient

- ...

- Data block size
- Communication session duration
- QoS parameters:
  - Delay and jitter
  - Loses
- Data block size
  - Packetization delay (data accumulation)
- Security

## **Switching Methods**

Switching method is a basement of any network technology

|  | CS+                                           | FastCS CellS              | + PS + MS                                                             |  |  |  |  |  |
|--|-----------------------------------------------|---------------------------|-----------------------------------------------------------------------|--|--|--|--|--|
|  | (PSTN)                                        | (DTM) (ATM)               | ) Virtual Datagram Telegraph<br>(X.25, FR) (TCP/IP)                   |  |  |  |  |  |
|  |                                               |                           |                                                                       |  |  |  |  |  |
|  | Transmission method                           | Synchronous,<br>no queues | Asynchronous, queues                                                  |  |  |  |  |  |
|  | Overload behavior                             | Refuse in service         | Increase of delay, packet loses,<br>because of queues overflow        |  |  |  |  |  |
|  | QoS                                           | Simple                    | Complex                                                               |  |  |  |  |  |
|  | Overheads                                     | Channel resources         | Headers, header processing,<br>queues managements, traffic<br>shaping |  |  |  |  |  |
|  | Channel resources<br>distribution flexibility | Poor                      | Good                                                                  |  |  |  |  |  |

## Cell Switching: ATM

#### Created to eliminate shortcomings of packet switching



- Features:
  - Connection-oriented
  - Short packets, fixed length cells
  - Four basic classes of service: A, B, C, D
- Advantages
  - Can transmit traffic of different kinds
  - Initially supports QoS
- Disadvantages
  - Based on packet switching => QoS are not native
  - High speed of transmission required
  - Large overheads
    - 1. Headers (48 bytes data / 5 byte header)
    - 2. Hardware overheads: complex equipment
  - Complicated and thus expensive equipment
  - Datagram mode is not supported (emulated)
  - Complicated integration with other technologies
  - Standardization still in progress

6

## Internet Protocol





IP Over Everything! Everything Over IP!

- "Everything over IP" and "IP over everything"
- Advantages
  - Can work over many network technologies
  - Widely spread
  - Good bandwidth utilization (?)
- Disadvantages
  - Not multiservice, but MONOSERVICE Network
  - Based on <u>datagram mode</u> (connectionless mode)
  - "Emulation, Emulation, Emulation!"
     IP does not support it emulates
  - Emulation of virtual connections (RSVP, etc)
  - Enormous overheads while transmitting real-time traffic (emulation of Circuit Switching by using <u>datagram mode</u>)
  - IP network is not transparent for traffic: jitter, loses
  - Poor security. Requires additional mechanisms

IntServ

DiffServ

MPLS

## Internet Protocol

Datagram protocol being adapted to emulate Circuit Switching



SATM: Transport System for Multiservice Network

Vladimir V. Kharitonov

### Circuit Switching Traditionally used in PSTN





- Used in PSTN, narrow-band ISDN
- Advantages
  - Ideal conditions for real-time traffic
  - Simplicity
  - Requires minimal network equipment resources
  - Native support for QoS
  - Guaranteed QoS
- Shortcomings
  - Poor bandwidth utilization
  - Difficultly in support for wide data rate ranges
- DTM (Dynamic synchronous Transfer Mode)

### Comparison of CS and PS

- Main limitation of Packet Switching absolute asynchronous
  - No matter what QoS mechanisms are used, no time transparency can be provided
  - Traffic is not structured while passing through network
  - Best effort mechanism is used. Is it good?
  - Each switch/router behaves independently of the entire network: no synchronization at all
  - The myth that PS provides higher delay than CS



Vladimir V. Kharitonov

### Comparison of CS and PS

### Circuit Switching – absolute synchronousness

- Traffic is strictly structured while passing through network => no jitter, no loses, no queues even in case of 100% load
- All switches handle traffic together, because of strict synchronization
- Network is 100% time transparent
- Bad bandwidth utilization (?)



# Hybrid Switching

Why not to use Hybrid Switching?



- Appeared long time ago and well-known
- What is Hybrid switching
  - Nothing new: Just combination of two switching methods
  - Just redistributes bandwidth between CS and PS
  - Dynamic bandwidth redistribution
- Disadvantages
  - Requires complex equipment: combination of CS and PS

## General Approach to Switching

Each switching method is based on this general approach

- Block switching approach was invented by Dr. Vladimir K. Kharitonov in 2000
- Introducing DATA BLOCK (DB)
  - Atomic switching unit
  - IP: variable size, header
  - ATM: fixed size, header
  - PSTN: fixed size (8 bytes), no header
- Introducing MULTIPLEXING INTERVAL (MI)
  - Time interval during which all queued data blocks are being sent.
  - The structuring unit in network
  - CS: MI is of fixed length of 125 micro seconds
  - Inside M.I. statistical multiplexing can be done
  - IP/ATM and other PS: Multiplexing interval is not defined, thus the structuring is poor





# Block Switching Over Synchronous Environment



# Block Switching Over Synchronous Environment

The way Block Switching can be implemented in synchronous environment





- Similar to circuit switching used in PSTN
  - Based on synchronous environment
- Similar to packet switching
  - Uses statistical multiplexing

# Variable Frame Length

Traffic bursts smoothes mechanism







- TDM:
  - Strict Synchronous
  - Frame size of fixed length
- Block Switching:
  - Quasi-synchronous
  - The length of frame varies to smooth traffic bursts
  - Oriented to low-speed channels

SATM: Transport System for Multiservice Network

17

Vladimir V. Kharitonov

### Multiplexing Interval of Variable Length



#### SATM: Transport System for Multiservice Network

#### Vladimir V. Kharitonov

### Block Switching in Asynchronous Environment

Structures traffic using packet switching mechanisms (for example IP)

| Packet                                                                                     | IP Packet IP Packet | Packet         | IP Packet     |     | IP Packet | Packet   | Packet |
|--------------------------------------------------------------------------------------------|---------------------|----------------|---------------|-----|-----------|----------|--------|
| <ul> <li>Traditional PS: absolutely asynchronous</li> <li>Best effort mechanism</li> </ul> |                     |                |               |     |           |          |        |
| MIHea                                                                                      | der IP Packet       | IP Packet IP I | Packet Packet | MIH | eader II  | P Packet |        |

- Multiplexing interval and PS network
  - Introducing traffic structureness in asynchronous environment
  - MI header mark (special packet or even a field in packet header)
  - Variable MI length
- Minimal equipment modifications (!)

### How Does It Work?

Simple description of switching within M



SATM: Transport System for Multiservice Network

21

## How Does It Work?

Simple description of switching within MI

N.

M.I

 Very important: switching is done by M.I.'s

M.I.

Corresponding M.I.'s are received and stored in buffer

**M.I.** 

- If some M.I. is longer, switch wait until corresponding M.I. is received by another port
- According to switching table (or routing table if we use IP) data blocks are switched
- Output M.I. are formed and placed into output buffer
- Output M.I. are transmitted

SATM: Transport System for Multiservice Network

M.I.

M.I.

## How Does It Work?

Simple description of switching within M



SATM: Transport System for Multiservice Network

### What Is the Price?

We win traffic structuring, but what do we loose?

### **PS-based Network**



- Myth "Delay in PS network is higher than in CS one" It is not correct
  - Network with low load packet is transferred with speed of light (we do not take into consideration switching delay)
  - When network load increases queues appear
  - Queues lead to jitter

### What Is the Price?

We win traffic structuring, but what do we loose?

### **Block Switching Network**



- Switching is done by Multiplexing Intervals
  - MI is buffered on each network hop, so data block cannot be transmitted just after it is received
- In case of low network load we CAN transmit data block faster, but we DON'T
- What is the price?
  - No matter, how network is loaded, switching delay remain constant

### What Is the Price?

We won traffic structuring, but what do we loose?

### **Switching Delay**



- No matter, how network is loaded, switching delay remain constant

26

# Multilayer Network Base on BS

Initially has facilities to be used as end-to-end network





- Layers
  - Edge Network (distribution layer))
  - Core Network
  - Access Network
- Each layer has its own MI

SATM: Transport System for Multiservice Network

27

# Block Switching Benefits

Simple and powerful, Native QoS support

- Network is time-transparent
- Network is invariant to traffic structure
- Native QoS Support. No emulation
  - QoS is guaranteed by technology nature
  - Low switching delay (determined by MI length)
  - <u>No jitter</u>
- Can handle QoS traffic even in case of almost 100% load
- Very good bandwidth utilization
- Can be used both on synchronous and asynchronous environment
   (GSM improvement!)
- Can work over low speed channels
- This idea resulted in SATM technology 28

SATM: Transport System for Multiservice Network

Synchronous

Transfer

Mode

Asynchronous

Vladimir V. Kharitonov

# Block Switching Benefits

Simple and powerful, Native QoS support

- Network is time-transparent
- Network is invariant to traffic structure

Block Switching t. No emulation



5 years of development

gth)

e of

and

- Block switching approach was patented in Russia in 2003
- Preparing additional feature patents
- Preparing US patent

Can work over low speed channels

This idea resulted in SATM technology 28
Vladimir V. Kharitonov

SATM: Transport System for Multiservice Network

Synchronous

Transfer

Mode

Asynchronous





### Thank you!

- Network technologies convergence. The problem of building global multiservice network
- Switching methods: circuit and packet switching
- ATM, IP or.. ? The requirements to NG Network
- Block Switching for next generation network
  - Powerful and flexible
  - Time-transparency
  - Native QoS mechanisms, guaranteed QoS
  - Low overheads
  - Wide speed range support

# www.satm-tech.com



Synchronous Asynchronous Transfer Mode Technology